Ver 2.0 HB 3520

Hybrid-RTM miRNA

SMALL & LARGE RNA PURIFICATION HANDBOOK

Customer & Technical Support

Should you have any further questions, do not hesitate to contact us.

We appreciate your comments and advice.

Contact Information

www.geneall.com

Tel: 82-2-407-0096

Fax: 82-2-407-0779

E-mail(Order/Sales): sales@geneall.com

E-mail(Tech. Info.): tech@geneall.com

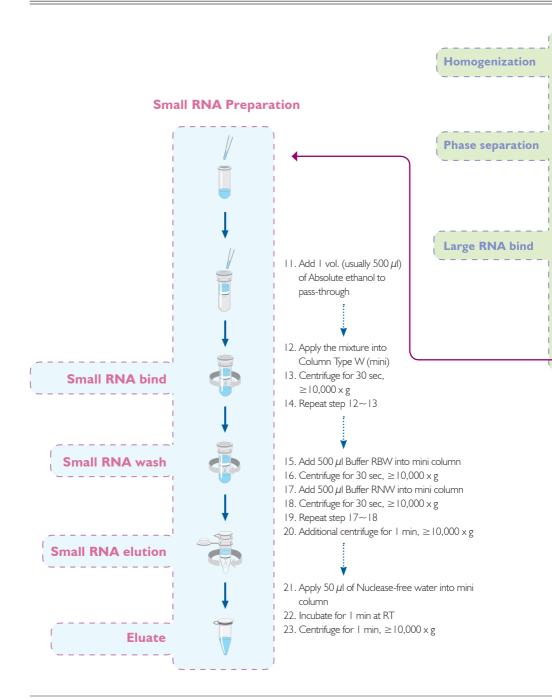
Visit GeneAll® Community

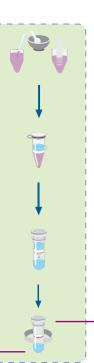
www.geneall.com

www.geneall.co.kr

Trademarks

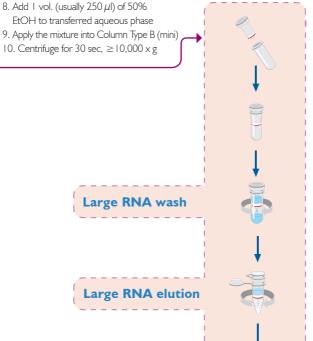
Hybrid- Q^{TM} , ExprepTM, ExfectionTM, ExpinTM, ExgeneTM, GenExTM, DirExTM, Hybrid-RTM, RiboExTM, RiboSaverTM, EzClearTM, EzSepTM, EzPureTM, EzPassTM, AmpONETM, AmpMasterTM, RealAmpTM, HyperScriptTM, ProtinExTM, PAGESTATM, STEADiTM, GENTiTM are trademarks of GeneAll Biotechnology Co., Ltd.


© 2020 GeneAll Biotechnology, all rights reserved.


This protocol handbook is included in :

GeneAll® Hybrid-R™ miRNA (325-150)

Visit www.geneall.com or www.geneall.co.kr for FAQ, Q&A and more information.


Brief Protocol

- 1. Homogenize \sim 50 mg tissue samples or 1×10^7 cells in 500 μ l RiboExTM
- 2. Incubate for 5 min at RT
- 3. (Optional) Centrifuge for 10 min at 4°C, ≥12,000 x g
- 4. Add 100 μ l chloroform
- 5. Incubate for 2 min at RT
- 6. Centrifuge for 15 min at 4° C, $\geq 12,000 \times g$
- 7. Transfer the aqueous phase into a new microcentrifuge tube

Large RNA Preparation

Eluate

- 24. Add 500 μ l Buffer SW I into mini column
- 25. Centrifuge for 30 sec, $\geq 10,000 \times g$
- 26. Add 500 μ l Buffer RNW into mini column
- 27. Centrifuge for 30 sec, ≥10,000 x g
- 28. Repeat step 26~27
- 29. Additional centrifuge for 1 min, \geq 1 0,000 x g
- 30. Apply 50 μl Nucleasefree water into mini column
- 31. Incubate for 1 min at RT
- 32. Centrifuge for 1 min, ≥10,000 x g

INDEX

04	Brief Protocol
07	Index
08	Kit Contents
	Materials Not Provided
09	Product Specifications
	Quality Control
	Storage Conditions
10	Safety Information
	Product Disclaimer
	Prevention of RNase Contamination
П	Product Description
12	Protocol
17	Troubleshooting Guide
19	Appendix I
22	Appendix 2
23	Appendix 3
25	Ordering Information

Kit Contents

Cat. No.	325-150	
Туре	mini	Storage
Components	Quantity	
No. of preparation	50	
RiboEx [™]	30 ml	4°C
Buffer SW I	30 ml	
Buffer RBW (concentrate) *	I3 ml	
Buffer RNW (concentrate) * †	22 ml	
Nuclease-free water	I5 ml	Room
Column Type B (mini) (with collection tube)	50	temperature
Column Type W (mini) (with collection tube)	50	(15~25°C)
2 ml collection tube	50	
1.5 ml microcentrifuge tube	100	
Protocol handbook	I	

^{*} Before first use, add absolute ethanol (ACS grade or better) into Buffer RBW and RNW as indicated on the bottle.

Materials Not Provided

Reagents

- Absolute ethanol (ACS grade or better)
- Chloroform or I-bromo-3-chloropropane (BCP)

Disposable materials

- RNase-free pipette tips
- Disposable gloves
- Sterile 1.5 ml microcentrifuge tubes

Equipments

- Equipment for homogenizing solid tissue
- \bullet Microcentrifuge for centrifugation at 4°C and room temperature
- Suitable protector (ex; lab coat, goggles, etc)
- Vortex mixer

[†] Contains sodium azide as a preservative.

Product Specifications

Hybrid-R™ miRNA						
Specification	Column Type B (mini) for Large RNA	Column Type W (mini) for Small RNA				
Туре	Spin	Spin				
Maximum amount of starting samples		Solid sample : 100 mg/prep Cultured cell : 1 x 10 ⁷ /prep				
Preparation time	≥30 min	≥30 min				
Maximum loading volume of mini column	700 µl	700 μl				
Minimum elution volume of mini column	50 <i>μ</i> Ι	30 <i>µ</i> I				
Maximum binding capacity of mini column	100 μg	100 µg				

Quality Control

All components in Hybrid- R^{TM} miRNA are manufactured in strictly clean conditions, and its degree of cleanness is monitored periodically. Quality control is carried out thoroughly from lot to lot, and only the qualified kits are approved to be delivered.

Storage Conditions

All components of Hybrid-RTM miRNA (except RiboExTM solution) should be stored at room temperature ($15\sim25^{\circ}$ C). It should be protected from exposure to direct sunlight.

RiboExTM solution should be stored at $2\sim8$ °C for optimal performance.

During shipment or storage under cool ambient condition, a precipitate can be formed in Buffer RBW. In such a case, heat the bottle to 50°C to dissolve completely. Using precipitated buffers will lead to poor DNA recovery.

Hybrid-R[™] miRNA is guaranteed until the expiration date printed on the product box.

Safety Information

The buffers included in Hybrid-RTM miRNA contain irritants which are harmful when in contact with skin or eyes, or when inhaled or swallowed. Care should be taken when handling such materials. Always wear gloves and eye protection, and follow standard safety precautions.

 $RiboEx^{TM}$ contains phenol which is poisonous and $RiboEx^{TM}$, Buffer RBW, and SWI contain chaotropic agents, which can form highly reactive compounds when combined with bleach.

Do NOT add bleach or acidic solutions directly to the sample-preparation waste.

Product Disclaimer

 $\label{eq:Hybrid-RTM} \mbox{miRNA} \mbox{ is for research use only, not for use in diagnostic procedure.}$

Prevention of RNase Contamination

RNase can be introduced accidentally during RNA purification. Wear disposable gloves always, because skin often contains bacteria and molds that can be a source of RNase contamination. Use sterile, disposable plastic wares and automatic pipettes to prevent cross-contamination of RNase from shared equipment.

Product Description

In recent years, interest in small RNA, such as siRNA and miRNA which are related to research of gene regulation, has expanded. There are many commercial kits for total RNA preparation, but most of these are focused on preparation of large RNA longer than 200 nt (nucleotides). Because both siRNA and miRNA are between $15\sim30$ nt in length, the need of specially optimized kit for small RNA (<200 nt) is growing rapidly.

Hybrid- R^{TM} miRNA is designed for purification of large and small RNA separately from cultured cells or animal tissues, and co-purification in a single tube is also available by modified protocol. This kit utilizes the lysis method of RiboExTM which has a powerful ability of lysis and the purification method based on glass fiber membrane technology.

Samples are homogenized in RiboEx[™], a monophasic solution containing phenol and guanidium salt, which rapidly lyse cells and inactivates nucleases. Addition of chloroform brings about a separation of the lysate into aqueous and organic phases. Total RNA locates in the aqueous phase while DNA and protein remain in the interphase and organic phase. Large and small RNA in the aqueous phase is selectively bound to Column Type B and Type W respectively. The Column Type B selectively adsorbs the RNA larger than 200 nt in length, while the Column Type W specifically holds the RNA smaller than 200 nt in length.

To purify large RNA, the aqueous phase is mixed with ethanol and the mixture is applied to a Column Type B. After centrifugation, large RNA is bound to membrane and the mixture containing small RNA goes into collection tube through the membrane. The membrane is washed away by two wash buffers (Buffer SWI and Buffer RNW) and purified large RNA is eluted from the membrane by Nuclease-free water.

To purify small RNA, the pass-through come from the binding step of large RNA is mixed with ethanol and then applied to a Column Type W. After washing with Buffer RBW and RNW, small RNA is eluted by Nuclease-free water.

The procedure of Hybrid- R^{TM} miRNA takes only 30 minutes for complete preparations of pure RNA. The purified RNA is suitable for the isolation of Poly A^+ RNA, Northern blotting, dot blotting, in vitro translation, cloning, RT-PCR, RPA and other analytical procedures.

Hybrid-R[™] miRNA

PROTOCOL

for large RNA and small RNA isolation

I. Homogenize ~50 mg tissue samples in 500 μ l RiboExTM. Homogenize ~1 x 10⁷ cells in 500 μ l RiboExTM.

Tissue samples

Basically, do not use more than 50 mg tissue per 0.5 ml RiboExTM solution. Exceptionally for adipose tissue, up to 100 mg can be used.



- Handling fresh tissue Immediately after dissection, inactivate RNases by any one of the following treatments.
- * Homogenize in Ribo Ex^{TM} immediately.
- * Freeze rapidly in liquid nitrogen.
- * Submerge in a tissue storage buffer to protect RNA from RNases.

Cell samples

Cells grown in Monolayer

Pour off media, add 500 μ l of RiboExTM per 10 cm² of culture dish area. Pass the cell lysate several times through a pipette. An insufficient amount of RiboExTM may result in contamination of the isolated RNA with DNA.

Pellet cells by centrifugation, then lyse in 500 μ l of RiboExTM per \sim 1 x 10⁷ cultured cells by repetitive pipetting or vortexing.

* Do NOT wash cells before lysis with RiboExTM as this may contribute to mRNA degradation.

2. Incubate the homogenate for 5 min at room temperature.

This step allows nucleoprotein complexes to completely dissociate.

Homogenized samples can be stored at -70°C for at least one month.

3. (Optional:) Centrifuge at 12,000 x g for 10 min at 4°C and transfer the supernatant to a fresh 1.5 ml microcentrifuge tube (not provided).

This optional step is required only for homogenate with high contents of proteins, fats, polysaccharides or extracellular materials, such as muscles, fat, tissue, and tuberous parts of plants.

The resulting pellet contains extracellular membranes, polysaccharides, and high molecular weight DNA, while the supernatant contains RNA.

Fat tissue samples will form a layer on top of the aqueous phase. It should be removed and discarded.

4. Add 100 μ l of chloroform per 500 μ l of RiboExTM. Shake vigorously for 15 sec and incubate for 2 min at room temperature.

Alternatively, 50 μ l of BCP (1-bromo-3-chloropropane) can be used in place of chloroform.

5. Centrifuge at $12,000 \times g$ for 15 min at 4° C and transfer the aqueous phase to a fresh 1.5 ml microcentrifuge tube (not provided).

The mixture will be separated into three phases; a lower phase, an interphase, and a colorless upper aqueous phase. The upper aqueous layer is about 50% of the volume of RiboExTM used for homogenization.

Centrifugation at over 8°C may cause some DNA to intrude in the aqueous phase.

- 6. Add I volume (usually 250 μ I) of 50% ethanol to the transferred aqueous phase and mix thoroughly by inverting. Do NOT centrifuge.
- 7. Transfer all the mixture to a Column Type B (mini).
- 8. Centrifuge at \geq 10,000 x g for 30 sec at room temperature. Transfer the mini column to a new 2 ml collection tube (provided), and store at room temperature. Use the pass-through for small (micro) RNA purification.

Make sure that no mixture remains in the mini column after centrifugation. If the residual mixture has remained, centrifuge again at higher speed until all of the solution has pass-through.

After this step, large RNA bind to mini column and small (micro)

Go on to step 9 for small RNA purification.

RNA exist in the pass-through.

Go on to step 21 for large RNA purification.

Small (micro) RNA purification (Blue ring column)

- Add I volume (usually 500 µI) of absolute ethanol to the collection tube including pass-through, and mix well by pipetting. Do NOT centrifuge.
- 10. Transfer 650 μ I of the mixture including any precipitate to a Column Type W (mini).
- II. Centrifuge at $\geq 10,000 \text{ x g for } 30 \text{ sec at room temperature.}$

Discard the pass-through and reinsert the mini column back into the collection tube.

- 12. Repeat step 10~11 using the remainder of the sample.
- 13. Add 500 μ l of Buffer RBW to the mini column.
- 14. Centrifuge at ≥10,000 x g for 30 sec at room temperature.

Discard the pass-through and reinsert the mini column back into the collection tube.

- 15. Add 500 μ l of Buffer RNW to the mini column.
- 16. Centrifuge at ≥10,000 x g for 30 sec at room temperature. Discard the pass-through and reinsert the mini column back into the collection tube.
- 17. Repeat step 15~16.
- 18. Centrifuge at ≥10,000 x g for an additional I min at room temperature to remove residual wash buffer. Transfer the mini column to a new 1.5 ml microcentrifuge tube (provided).

Residual ethanol may interfere with downstream reactions. Care must be taken at this step for eliminating the carryover of Buffer RNW.

19. Add 50 μ l of Nuclease-free water to the center of the membrane in the mini column. Incubate for I min at room temperature.

According to the expected yield, an appropriate elution volume can be applied on the membrane.

20. Centrifuge at ≥ 10,000 x g for 1 min at room temperature. Purified small RNA can be stored at 4°C for immediate analysis and can be stored at -70°C for long term storage.

Large RNA purification (Red ring column)

- 21. Add 500 μ l of Buffer SWI to the Column Type B (mini).
- 22. Centrifuge at ≥ 10,000 x g for 30 sec at room temperature.

 Discard the pass-through and reinsert the mini column back into the collection tube.
- 23. Add 500 μ l of Buffer RNW to the mini column.
- 24. Centrifuge at \geq 10,000 x g for 30 sec at room temperature. Discard the pass-through and reinsert the mini column back into the collection tube.
- 25. Repeat step 23~24.
- 26. Centrifuge at ≥10,000 x g for an additional I min at room temperature to remove residual wash buffer. Transfer the mini column to a new 1.5 ml microcentrifuge tube (provided).

Residual ethanol may interfere with downstream reactions. Care must be taken at this step for eliminating the carryover of Buffer RNW.

27. Add 50 μ I of Nuclease-free water to the center of the membrane in the mini column. Incubate for I min at room temperature.

According to the expected yield, an appropriate elution volume can be applied on the membrane.

28. Centrifuge at ≥10,000 x g for 1 min at room temperature.

Purified large RNA can be stored at 4°C for immediate analysis and can be stored at -70°C for long term storage.

Troubleshooting Guide

Facts	Possible Causes	Suggestions
Low yield of RNA	Poor quality of starting material	Process the sample immediately after harvest from animal. Thaw the frozen sample directly in RiboEx $^{\text{TM}}$.
	Insufficient homogenizing of sample	Make sure no particulate matter remains. Be sure to incubate for 5 min at room temperature after homogenization.
	Some aqueous phase left	Perform second extraction with the remaining aqueous phase.
	Incorrect elution conditions	Add Nuclease-free water to the center of the mini column membrane.
Degradation of RNA	Sample manipulated too much before the addition of RiboEx™	Process the sample immediately after harvest from animal.
		For cultured cell, minimize washing steps. Add RiboEx [™] directly to plates. Do NOT trypsinize cells.
	Improper storage of RNA	Store isolated RNA at -70°C, Do NOT store at -20°C.
	Reagent or disposable products is not RNase-free	Make sure to use RNase-free products only.
Low A _{260/280} (<1.6)	Aqueous phase was contaminated with the phenol phase	Avoid carryover when transferring the aqueous phase to a fresh tube.
	Insufficient lysis of sample with RiboEx™	Use 0.5 ml RiboEx TM for up to 50 mg tissue or up to 1 x 10^7 cells.
Contamination of DNA	The interphase was co-transferred by mistake	Be sure not to transfer any of the interphase (containing DNA) to the aqueous phase.

Facts	Possible Causes	Suggestions
Contamination of DNA	Insufficient RiboEx™ used	Use 0.5 ml RiboEx TM for 50 mg tissue or 1×10^7 cells.
	Temperature was too high during centrifugation	The phase separation should be performed at 4°C to allow optimal separating and removal of genomic DNA from the aqueous phase.
Cells not detached completely from flask after addition of RiboEx™	This can be seen with some strongly adherent cells	After addition of RiboEx TM , let cells sit 2 to 3 min. Scrape cells with a scraper. Incubate for several minutes. Collect and repeatedly pipette cells over flask surface. Then transfer homogenate to a tube.
The yield of miRNA is too low or miRNA do not separate completely	Incorrect binding step	Be sure to use the proper concentrations of ethanol at binding step. 50% ethanol should be used for the large RNA preparation step then absolute ethanol should be used for the small RNA.
Completely	Too much starting sample	Use 0.5 ml RiboEx TM for 50 mg tissue or 1×10^7 cells.
RNA does not perform well in downstream application	Residual ethanol remains in eluate	Centrifuge again to remove any residual ethanol included in Buffer RNW from mini column membrane (step 18, 26).

APPENDIX . Co-purification of total RNA (Large and Small RNA)

This modified protocol allows co-purification of large and small RNA.

For the purification of total RNA, separated aqueous phase is mixed with ethanol and then the mixture is applied to Column Type W. Through this simple steps, total RNA is bound to the membrane. After washing steps, total RNA can be eluted by Nuclease-free water.

Protocol for simultaneous purification of large RNA and small RNA from cell samples.

I. Homogenize ~50 mg of tissue samples in 500 μ l RiboExTM. Homogenize ~1 x 10⁷ cells in 500 μ l RiboExTM.

Tissue samples

Basically, do not use more than 50 mg tissue per 0.5 ml RiboEx™ solution.

But exceptionally for adipose tissue up to 100 mg can be used.

Handling fresh tissue

Immediately after dissection, inactivate RNases by any one of the following treatments.

- * Homogenize in Ribo Ex^{TM} immediately.
- * Freeze rapidly in liquid nitrogen.
- * Submerge in a tissue storage buffer to protect RNA from RNases.

Cell samples

Cells grown in Monolayer

Pour off media, add 500 μ l of RiboExTM per 10 cm² of culture dish area. Pass the cell lysate several times through a pipette. An insufficient amount of RiboExTM may result in contamination of the isolated RNA with DNA.

Cells grown in suspension

Pellet cells by centrifugation, then lyse in 500 μ l of RiboExTM per \sim l x 10⁷ cultured cells by repetitive pipetting or vortexing.

* Do not wash cells before lysis with RiboEx[™] as this may contribute to mRNA degradation.

Incubate the homogenate for 5 min at room temperature.

This step allows nucleoprotein complexes to completely dissociate. Homogenized samples can be stored at -70°C for at least one month.

3. (Optional:) Centrifuge at 12,000 x g for 10 min at 4°C and transfer the supernatant to a fresh 1.5 ml microcentrifuge tube (not provided).

This optional step is required only for homogenate with high contents of proteins, fats, polysaccharides or extracellular materials such as muscles, fat, tissue, and tuberous parts of plants.

The resulting pellet contains extracellular membranes, polysaccharides, and high molecular weight DNA, while the supernatant contains RNA.

Fat tissue samples will form a layer on top of the aqueous phase.

It should be removed and discarded.

4. Add 100 μl of chloroform per 500 μl of RiboExTM. Shake vigorously for 15 sec and incubate for 2 min at room temperature.

Alternatively, 50 μ l of BCP (1-bromo-3-chloropropane) can be used in place of chloroform.

5. Centrifuge at 12,000 x g for 15 min at 4°C and transfer the aqueous phase to a fresh 1.5 ml microcentrifuge tube (not provided).

The mixture will be separated into three phases; a lower phase, an interphase, and a colorless upper aqueous phase. The upper aqueous phase is about 50% of the volume of RiboExTM used for homogenization.

Centrifugation at over 8°C may cause some DNA to intrude in the aqueous phase.

6. Add 1.5 volume (usually 375 μ I) of absolute ethanol to the transferred aqueous phase and mix thoroughly by inverting. Do NOT centrifuge.

- 7. Transfer all the mixture including any precipitate to a Column Type W (mini).
- 8. Centrifuge at \geq 10,000 x g for 30 sec at room temperature.

Discard the pass-through and reinsert the mini column back into the collection tube.

Repeat step 7~8 using the remainder of the sample. 9.

- 10. Add 500 μ l of Buffer RBW to the mini column.
- 11. Centrifuge at \geq 10,000 x g for 30 sec at room temperature.

Discard the pass-through and reinsert the mini column back into the collection tube.

- 12. Add 500 μ l of Buffer RNW to the mini column.
- 13. Centrifuge at \geq 10,000 x g for 30 sec at room temperature.

Discard the pass-through and reinsert the mini column back into the collection tube.

- 14. Repeat step 12~13 once more.
- 15. Centrifuge at ≥ 10,000 x g for an additional I min at room temperature to remove residual wash buffer. Transfer the mini column to a new 1.5 ml microcentrifuge tube (provided).

Residual ethanol may interfere with downstream reactions. Care must be taken at this step for eliminating the carryover of Buffer RNW.

16. Add 50 μ I of Nuclease-free water to the center of the membrane in the mini column. Incubate for I min at room temperature.

According to the expected yield, an appropriate elution volume can be applied on the membrane.

17. Centrifuge at \geq 10,000 x g for 1 min at room temperature.

Purified total RNA can be stored at 4°C for immediate analysis and can be stored at -70°C for long term storage.

APPENDIX 2. Confirmation of RNA yield and purity by UV absorbance

Concentration of RNA

The concentration of RNA can be determined by the absorbance at 260 nm using spectrophotometer. For the convenient measurement, we recommend using the NanoDrop® which can reduce your RNA sample and time. If unavailable, you need to dilute the RNA samples to measure the concentration through traditional spectrophotometer. The value of A_{260} should be between 0.15 and 1.00. Be sure to calibrate the spectrophotometer with the same solution used for dilution. An absorbance of 1 at 260 nm is correspond to about 40 μ g RNA/ml at a neutral pH. Therefore, the concentration of RNA was calculated by the formula shown below.

 A_{260} x dilution factor x $40 = RNA \mu g/ml$

Purity of RNA

To confirm the RNA purity, you should read the ratio of A_{260}/A_{280} . Pure RNA is in the range of $1.8\sim2.2$.

APPENDIX 3. Formaldehyde agarose gel electrophoresis (Denaturing gel method)

A denaturing agarose gel is routinely used for the assessment of the quality of an RNA preparation. After preparation, RNA forms secondary structure via intramolecular base pairing. Therefore, it is very difficult to get the exact result of electrophoresis because of migrating inaccuracy. However, the denaturing gel denatures the secondary structure of RNA and makes an accurate migration. To confirm the RNA band, the gel should be transferred to a UV transilluminator after electrophoresis. Mainly, two RNA bands are shown. In case of animal sample, the 28S and 18S rRNA bands are confirmed on the gel. If they are intact, the RNA bands should be sharp and the intensity of upper band should be about twice that of the lower band.

Prepare the denaturing gel

- 1. Put 1 g agarose in 72 ml water and heat to dissolve thoroughly.
- 2. Cool to 60°C.
- 3. Add 10 ml of 10X MOPS buffer, 18 ml of 37% formaldehyde, and 1 μ l of a 10 mg/ml ethidium bromide (EtBr).
- 4. Mix well then pour the gel into the gel tray and cool to solidify it.
- 5. Transfer the solidified gel from tray to tank, and add enough 1X MOPS running buffer to cover the gel.

Prepare the RNA sample

I. Make the mixture. $? \mu I RNA (up to 20 \mu g)$

 $2 \mu I$ 10X MOPS electrophoresis buffer

4 μ l formaldehyde 10 μ l formamide

- 2. Incubate the mixture for 15 min at 65°C.
- 3. Chill the sample for 5 min in ice.
- 4. Add $2 \mu l$ of 10X formaldehyde gel-loading dye to the mixture.
- 5. Load the mixture in a denaturing gel which is covered with a sufficient 1X MOPS electrophoresis buffer.
- Run the gel and confirm the RNA band on transilluminator.
 Occasionally, gel destaining may be needed to increase the visibility of the bands of RNA in dH₂O for several hours.

Composition of buffers

- IOX MOPS buffer

0.2 M MOPS 20 mM sodium acetate 10 mM EDTA pH to 7.0 with NaOH

- IOX formaldehyde gel-loading dye

50% glycerol 10 mM EDTA 0.25% (w/v) bromophenol blue 0.25% (w/v) xylene cyanol FF

* Caution

When working with these chemicals, always use gloves and eye protector to avoid contact with skin and cloth. Especially, formaldehyde and ethidium bromide (EtBr) should be handled in a fume hood.

Ordering Information

Products	Scale	Size	Cat. No.	Туре	Products	Scale	Size	Cat. No.	Туре	
GeneAll® <i>Hybri</i> d	- Q^{тм} fo	r rapid pı	reparation of	plasmid DNA	GeneAll® Exgene	e TM for is	olation o	f total DNA		
Plasmid Rapidprep		50	100-150			noini	100	105-101	spin /	
	mini	200	100-102	spin		mini	250	105-152	vacuum	
					Blood SV	Midi	26	105-226	spin /	
GeneAll® <i>Expreț</i>	TM for p	reparatio	n of plasmid l	DNA	PIOOG 34	I'llul	100	105-201	vacuum	
		50	101-150	spin /		MAXI	10	105-310	spin /	
	mini	200	101-102	vacuum		MANI	26	105-326	vacuum	
DI :1.CV/		26	101-226			mini	100	106-101	spin /	
Plasmid SV	Midi	50	101-250	spin /	Cell SV		250	106-152	vacuum	
		100	101-201	vacuum	Cell 3V	MAXI	10	106-310	spin /	
GeneAll® <i>Exfect</i>	ion TM					MANI	26	106-326	vacuum	
		transfect	ion-grade pla	smid DNA		mini	100	108-101	spin /	
		50	111-150	spin /		ITIIIII	250	108-152	vacuum	
Plasmid LE	mini	200	111-102	vacuum	Clinic SV	Midi	26	108-226	spin /	
(Low Endotoxin)		26	111-226	spin /	CIIIIC 3V	Pildi	100	108-201	vacuum	
	Midi	100	111-201	vacuum		MANA	10	108-310	spin /	
Plasmid EF		20	121-220			MAXI	26	108-326	vacuum	
(Endotoxin Free)	1.11(1)	100 121-201 spin Genomic DNA micro	0	50	118-050	spin				
							100	117-101	spin /	
GeneAll® <i>Expin™</i>	n for pur	ification o	of fragment D	NA		mini	250	117-152	vacuum	
· · · · · · · · · · · · · · · · · · ·	' '	50	102-150	spin /		Midi	26	117-226	spin /	
Gel SV	mini		102-102	vacuum	Plant SV		100	117-201	vacuum	
		50	103-150	spin /		MAXI	10	117-310	spin /	
PCR SV	mini	200	103-102	vacuum		MAXI	26	117-326	vacuum	
		50	113-150	spin /	Soil DNA mini	mini	50	114-150	spin	
CleanUp SV	mini	200	113-102	vacuum	Stool DNA mini	mini	50	115-150	spin	
		50	112-150	spin /	Viral DNA / RNA	mini	50	128-150	spin	
Combo GP	mini	200	112-102	vacuum	FEDE Tissue DNA	mini	50	138-150	onin	
					FFPE Tissue DNA	mini	250	138-152	spin	
GeneAll® Exgene	for is				GeneAll® GenEx	TM for isol	ation of	total DNA wi	thout spin (
	mini	100 250		spin / vacuum		_	100	220-101		
			GenFx™ Blood	Sx	500	220-105	solution			
Tissue SV	Midi	26 100	104-226	spin / vacuum		Lx	100	220-301	solution	
						100	221-101			
	MAXI	10	104-310	spin / vacuum	GenEx [™] Cell	Sx	500	221-105	solution	
		26	104-326			Lx	100	221-301	solution	
	mini	100	109-101	spin /			100	222-101		
		250	109-152	vacuum	GenEx [™] Tissue	GenEx [™] Tissue	Sx	500	222-105	solution
Tissue plus! SV	Midi	26	109-226	spin /		Lx	100	222-301	solution	
•		100	109-201	vacuum			-	50.		
ΜΔΧ		10	109-310	spin /						
	MAXI	26	109-326	vacuum						

Products	Scale	Size	Cat. No.	Туре
GeneAll® GenE x	TM for is	olation of	total DNA	
	Sx	100	227-101	
GenEx™ Plant	Mx	100	227-201	solution
	Lx	100	227-301	
	Sx	100	228-101	
GenEx [™] Plant plus!	Mx	50	228-250	solution
	Lx	20	228-320	

GeneAll® *DirEx™* series

for preperation of PCR-template without extraction							
$DirEx^{TM}$	100	250-101	solution				
DirEx [™] Fast-Tissue	96 T	260-011	solution				
DirEx [™] Fast-Cultured cell	96 T	260-021	solution				
DirEx [™] Fast-Whole blood	96 T	260-03 I	solution				
DirEx [™] Fast-Blood stain	96 T	260-041	solution				
$DirEx^TM\mathit{Fast} ext{-}Hair$	96 T	260-051	solution				
DirEx [™] Fast-Buccal swab	96 T	260-061	solution				
DirEx [™] Fast-Cigarette	96 T	260-071	solution				

GeneAll® RNA series for preperation of total RNA

RiboEx [™]	mini	100	301-001	1
RIDOEX	mini	200	301-002	solution
Hybrid-R [™]	mini	100	305-101	spin
Hybrid-R [™] Blood RN	Amini	50	315-150	spin
Hybrid-R [™] miRNA	mini	50	325-150	spin
RiboEx [™] LS	mini	100	302-001	1
RIDOEX LS	mini	200	302-002	solution
Riboclear™	mini	50	303-150	spin
Riboclear [™] plus!	mini	50	313-150	spin
Ribospin TM	mini	50	304-150	spin
Dib:-TM II	mini	50	314-150	
Ribospin [™] II		300	314-103	spin
Ribospin ™vRD	mini	50	302-150	spin
Ribospin ™ vRD plus!	mini	50	312-150	spin
Ribospin ™ vRD II	mini	50	322-150	spin
Ribospin [™] Plant	mini	50	307-150	spin
Ribospin [™] Seed / Fruit	mini	50	317-150	spin
$Allspin^TM$	mini	50	306-150	spin
RiboSaver™	mini	100	351-001	solution

Products	Scale	Size	Cat. No.	Туре			
GeneAll® AmpONE TM for PCR amplification							
		250 U	501-025				
Taq DNA polymeras	se -	500 U	501-050	(2.5 U/ µl)			
	Ī	,000 U	501-100				
	96 tubes-	20 µl	526-200				
Taq Premix		50 µl	526-500	solution			

GeneAll® AmpMaster™ for PCR amplification

T M+	0.5 ml x 2 tubes	541-010	solution
Taq Master mix	0.5 ml x 10 tubes	541-050	solution

GeneAll® HyperScriptTM for Reverse Transcription

		,	
Reverse Transcripta	ase 10,000 U	601-100	solution
RT Master mix	$0.5~\mathrm{ml} \times 2~\mathrm{tubes}$	601-710	solution
One-step RT-PCR Master mix	$0.5~\mathrm{ml} \times 2~\mathrm{tubes}$	602-110	solution
One-step RT-PCR Premix	96 tubes, 20 μℓ	602-102	solution

GeneAll® RealAmp[™] for qPCR amplification

SYBR qPCR Master	200 rxn	20 μl	801-020	solution
mix (2X, Low ROX)	500 rxn	20 μℓ	801-050	SOIULION
SYBR qPCR Master mix (2X, High ROX)	200 rxn	20 μℓ	801-021	solution
	500 rxn	20 μl	801-051	Solution

ize Cat.	No. Type
	ze Cat.

GeneAll® Protein series

ProtinEx [™] Animal cell / tissue	100 ml	701-001	solution
PAGESTA [™] Reducing 5X SDS-PAGE Sample Buffer	10 tubes	751-001	solution

GeneAll $^{ ext{@}}$ STEADi $^{ ext{TM}}$ for automatic nucleic acid puritication

12 Instrument		GST012	system
24 Instrument		GST024	system
Genomic DNA Cell / Tissue	96	401-104	kit
Genomic DNA Blood	96	402-105	kit
Total RNA	96	404-304	kit
Viral DNA / RNA	96	405-322	kit
CFC Seed DNA / RNA	96	406-C02	kit
Genomic DNA Plant	96	407-117	kit
Soil DNA	96	408-114	kit

GeneAll® GENTi[™] 32 Ultimately flexible automatic extraction system

Automatic extrantion equipment		GTI032	system
Genomic DNA	48	901-048	strip
	96	901-096	plate
Viral DNA / RNA	48	902-048	strip
	96	902-096	plate
Whole Blood Genomic DNA	48	903-048	strip
	96	903-096	plate

www.geneall.com

GeneAll Bldg., 303-7 Dongnam-ro, Songpa-gu, Seoul, South Korea 05729

E-mail: sales@geneall.com

Tel: 82-2-407-0096 Fax: 82-2-407-0779