Amplicon Genotyping and **Methylation** Analysis by HRM

Jonathan Nery **Applications Scientist**

© 2010 Illumina, Inc. All rights reserved. Illumina, illuminaDx, Solexa, Making Sense Out of Life, Oligator, Sentrix, GoldenGate, GoldenGate Indexing, DASL, BeadArray, Array of Arrays, Infinium, BeadXpress, VeraCode, IntelliHyb, iSelect, CSPro, GenomeStudio, Genetic Energy, HiSeg, and HiScan are registered trademarks or trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners.

Introduction

- Requirements for High Resolution Melt
 - Chemistry
 - Instrumentation
 - Software
- Applications
 - Genotyping
 - Class IV SNPs
 - Open platform
 - DNA Methylation Analysis

Requirements for HRM

Chemistry

- Saturating dsDNA binding dyes
- Non-inhibitory to PCR
- SYTO[®] 9 (Life Tech.), LCGreen[™] (Idaho Tech.), EvaGreen[™] (Biotium Inc.)

Instrumentation

- Precise temperature control
- Minimum of well-to-well thermal or optical non uniformity
- Fast data acquisition rate for more data points

Software

- Specialized normalization algorithms
- Difference plots

Double Stranded DNA Binding Dyes

Non-Saturating dsDNA Binding Dye - SYBR[®] Green I

illumina

Saturating dsDNA Binding Dye

- SYTO[®] 9

HRM Compatible Real-Time PCR Instruments

Life Technologies 7500Fast/7900Fast/Viia 7

Illumina Eco™

Qiagen Rotor-Gene Q

Bio-Rad CFX96/CFX384

Roche LightCycler® 480

Images not to scale

Eco Thermal System

- Temperature uniformity and accuracy of < ±0.1°C</p>
- Ramp rate of > 5°C/sec
- Temperature resolution of 0.1°C
- No temperature shift or calibration required for HRM

Eco Software – Melt Curve Normalization

- Raw fluorescence pre- and post- melt normalized to 100% and 0%
- Aligns curves for better differentiation

Eco Software – Difference Plot View

- Alternate view of melt curve to maximize differences
- Subtract a reference curve from each curve

Applications – Amplicon Genotyping

- Three possible genotypes
 - Homozygous Wild-type
 - Homozygous Mutant
 - Heterozygous

Each will produce a unique melting profile that can be differentiated by HRM

PCR of Homozygous Samples

Melting Profile of Homozygous Samples

Homozygous Samples Differentiated by Shift in Melting Temperature

11

PCR of Heterozygous Sample

Melting Profile of Heterozygous Samples

Heterozygous Sample Differentiated by Curve Shape

13

Amplicon T_m Shifts for the 4 SNP Classes

SNP Class	Base Change	Frequency in Human Genome	Approximate T _m Melt Curve Shift
1	C/T and G/A	0.67	> 0.5°C
2	C/A and G/T	0.18	0.4 to 0.5°C / 0.2 to 0.5°C
3	C/G	0.09	0.2 to 0.4°C
4	A/T	0.07	< 0.2°C

- Amplicon T_m shifts vary from large to very small depending on identity of polymorphism
- Class 4 SNPs are the rarest and most difficult SNP type to discriminate by T_m
- HRM requires highly optimized assays and precise instrumentation to differentiate sequence changes

Single Nucleotide Resolution

Primer and Amplicon Sequences (60 and 61 bp):

5'-	CACCTCACGCAGCACTTACCAA	
5'-	CACCTCACGCAGCACTTACCAACTACTCAT a CAGACTCATTCACCTCACCATGTCACTCGC	76.64°C
5 ' -	CACCTCACGCAGCACTTACCAACTACTCAT t CAGACTCATTCACCTCACCATGTCACTCGC	76.82°C
5'-	CACCTCACGCAGCACTTACCAACTACTCAT C CAGACTCATTCACCTCACCATGTCACTCGC	77.47°C
5'-	CACCTCACGCAGCACTTACCAACTACTCATgCAGACTCATTCACCTCACC	77.70°C
5'-	CACCTCACGCAGCACTTACCAACTACTCAT : CAGACTCATTCACCTCACCATGTCACTCGC	76.95°C
	AAGTGGAGTGGTACAGTGAGCG $-5'$	

Normalized Melt and Difference Plot

Five clear melt profiles with good separation

A/T polymorphism within KIAA1683 (rs8110972)

Primer and Amplicon Sequences (48 bp):

5' - GGTGACAGCCATGTCTACA	
5'- GGTGACAGCCATGTCTACAGGCACA a ACACGTGAGGI	GGCTTGTCCCC 81.17°C
5'- GGTGACAGCCATGTCTACAGGCACAtaCACGTGAGGI	GGCTTGTCCCC 80.76°C
ACTCCA	CCGAACAGGGG -5 '

▶ 8 human genomic DNA samples – 3 technical replicates of each

Normalized Melt Normalized Fluorescence minus Reference Normalized Fluorescence -5 -10 **BLUE** = TT PINK= AA **GREEN** = AT -15 0 -Temperature (°C) Temperature (°C)

Difference Plot

illumina

 A/T polymorphism within ATP-binding cassette, sub-family C (CFTR/MRP), member 12 (ABCC12) gene (rs6500305)

Primer and Amplicon Sequences (75 bp):

5′-	CCAGGCCCTGCATGGA	
5′-	CCAGGCCCTGCATGGAGGAGGTGATGTGGG t GAACCAGGGTGACCGGCTGACATTCTCCACCTTCTTGAGCTCCT	84.08°C
5′-	CCAGGCCCTGCATGGAGGAGGTGATGTGGG <mark>a</mark> GAACCAGGGTGACCGGCTGACATTCTCCACCTTCTTGAGCTCCT	83.95°C
	TAAGAGGTGGAAGAACTCGAGGA	-5′

45 human genomic DNA samples

Normalized Melt Normalized Fluorescence minus Reference Normalized Fluorescence -5 -10 **BLUE** = TT PINK= AA -15 **GREEN** = AT Temperature (°C) Temperature (°C)

Difference Plot

illumina

Available HRM Master Mixes

Four commercially available HRM mixes evaluated on Eco system

- BioRad SsoFast EvaGreen Supermix
- Life Technologies EXPRESS SYBR[®] GreenER[™]
- Life Technologies MeltDoctor™ HRM Master Mix
- Roche LightCycler [®] 480 HRM
- Genotyping of a Class II SNP
 - A/C polymorphism in solute carrier family 28 (sodium-coupled nucleoside transporter), member 2 (SLC28A2) gene (rs1060896)

Primer and Amplicon Sequences (65 bp):

5'- AAAGCAAGAAGTTTCTGCAAAACA	
5'- AAAGCAAGAAGTTTCTGCAAAACACACGCCAG <mark>a</mark> TTGTTCAAGAAGATCCTGTTGGGCCTGTTGTG	77.12°C
5'- AAAGCAAGAAGTTTCTGCAAAACACACGCCAG <mark>c</mark> TTGTTCAAGAAGATCCTGTTGGGCCTGTTGTG	77.93°
TAGGACAACCCGGACAACAC -5'	

45 human genomic DNA samples

Normalized Melt Curves

Three genotypes clearly resolved by all mixes

Difference Plots

Wild Type (AA) sample used a reference for difference plot

23

Application – DNA Methylation Analysis

 DNA methylation of (CpGs) is a key epigenetic mechanism regulating gene expression

Methylation Analysis by HRM

Samples differentiated by differences in melting temperature

HRM can be Sensitive and Semi-Quantitative

- Bisulfite converted methylated and unmethylated DNA (Qiagen) mixed in different ratios to form a 'standard curve'
- Primers designed according to recommendations from Wojdacz et al (2009)
 - Limited number of CpGs included in primers to overcome PCR bias
 - 60°C annealing temperature

HRM can be Sensitive and Semi-Quantitative

HRM can be Sensitive and Semi-Quantitative

Both assays able to detect 1% methylated DNA in a background of unmethylated DNA

Methylation Analysis of Tumor, Pseudotumor and Normal Tissue

Tumor sample: expected to be less methylated than the normal adjacent tissue **Pseudotumor sample**: expected to have same methylation level as the normal adjacent tissue

Summary

- Requires high performance instrumentation
- Enables cost effective high value analysis
 - Genotyping
 - Methylation

illumına[®]

30

Acknowledgements

The Eco team

McGill University

- Moshe Szyf, Ph.D.
- Barbara Stefanska, Ph.D
- Aurélie Bouzelmat

